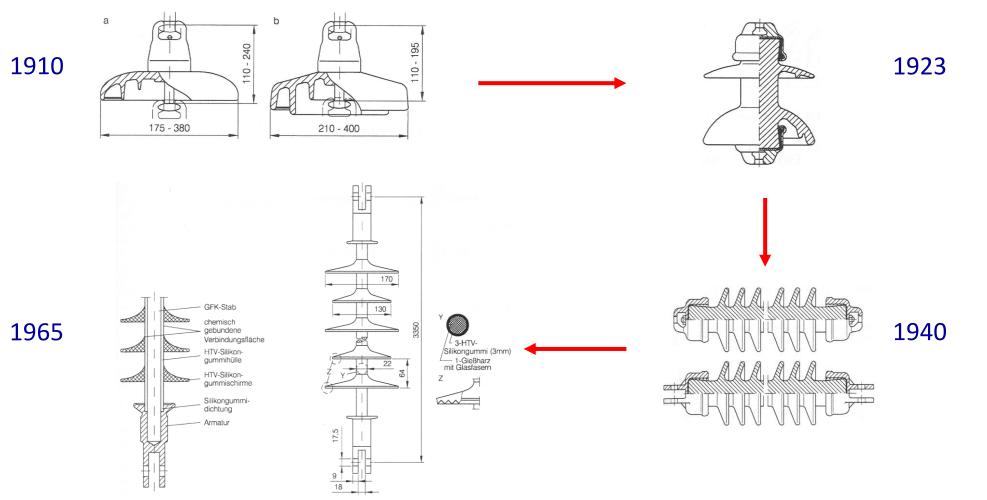
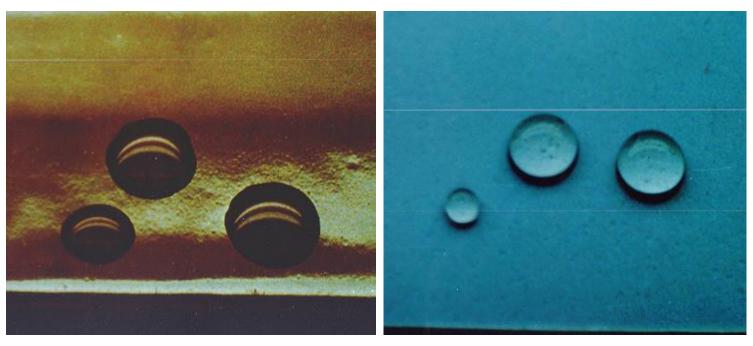


# High Voltage Consulting Redefined


Your independent partner for high voltage consulting and testing

Dipl.-Ing. Andreas Stockhausen astockhausen@lappinsulators.com www.lappinsulators.com

Dr. Igor Gutman igor@i2group.se www.i2group.se




### Basics – Insulator Types





#### **New Surface**



New ceramic surface

New silicone surface

In a new, non-polluted stage most surfaces are water repellent = hydrophobic.




Polluted passiv surface

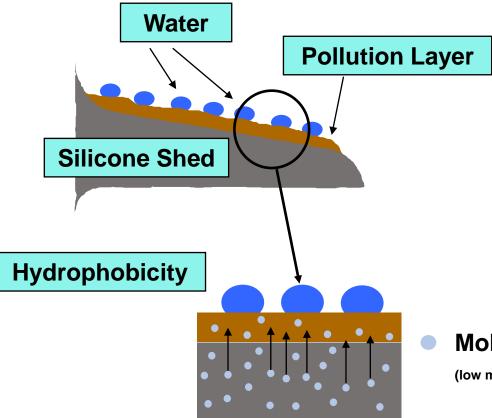


Polluted active surface

E.G.:The pollution layer on a ceramic/glass/EPR surface is hydrophilic. E.G.:The pollution layer on a silicone surface becomes hydrophobic. (Pollution Conditions IEC 815)






Polluted ceramic surface



Polluted silicone surface

The pollution layer on a ceramic or glass surface is wettable. The pollution layer on a silicone surface becomes hydrophobic.





#### Molecular Silicone LMW

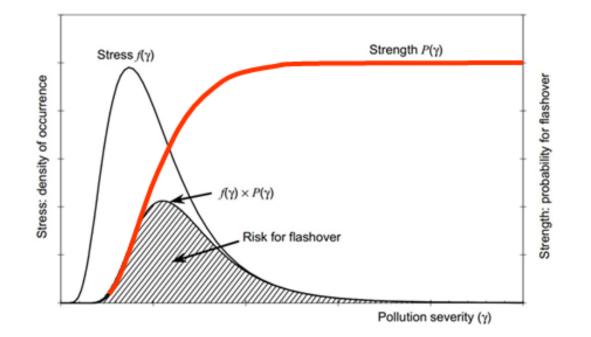
(low molecular weights)

Hydrophobic Effect



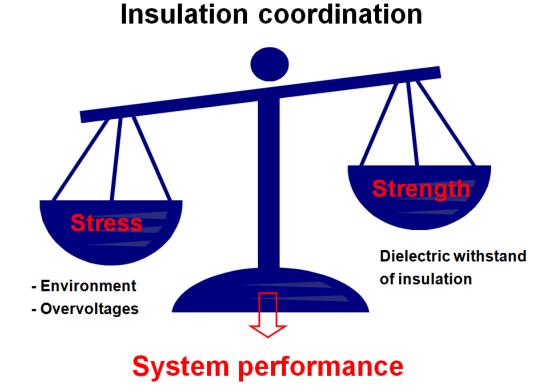


- pollution layer water repellent
- low leakage currents
- low risk of flashover
- low line losses
- no cleaning required




#### Find solution providing:

"reasonable performance at reasonable cost"


#### by use of:

#### "appropriate margin between foreseen environmental stresses and insulator strength"





Principles of pollution dimensioning according to the IEC TS 60815-1 and their practical application using Insulation Selection Tool (IST) software program





2018-07-27

# **Insulator Selection Tool**

### Recently published IEC 60815-1,2,3,4



Auswahl und Bemessung von Hochspannungsisolatoren für verschmutzte Umgebungen

- 1. Definitionen
- 2. Keramik- und Glasisolatoren für AC Systeme
- 3. Kunststoffisolatoren für AC Systeme
- 4. Isolatoren für DC Systeme



10



### Content

- 1. Introduction
- 2. Three general approaches
- 3. Evaluation of site pollution severity
- 4. Deterministic vs. statistical approach
- 5. Insulator Selection Tool (IST)



### Three general approaches

|                      | APPRO<br>(Use past e                                                                                                                        |                                                                                                              |   | APPRO<br>(Measure                                                                                                                                                                                    |                                                                                        | _ |                                                                                                                                            | ACH 3<br>and design)                                                                                                           |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Method               | <ul> <li>Use existing<br/>station expersion<br/>same site, a<br/>or a site with<br/>conditions</li> </ul>                                   | rience for the<br>nearby site                                                                                |   | <ul> <li>Measure or e<br/>pollution sev</li> <li>Select candii<br/>insulators us<br/>and creepag<br/>hereafter</li> <li>Choose appl<br/>laboratory te<br/>criteria</li> <li>Verify/adjust</li> </ul> | erity<br>date<br>ing profile<br>e guidance<br>icable<br>st and test                    |   | <ul> <li>Measure or e<br/>pollution sev</li> <li>Use these da<br/>type and size<br/>based on pro<br/>creepage gui<br/>hereafter</li> </ul> | erity<br>ata to choose<br>e of insulation<br>ofile and                                                                         |
| input<br>data        | <ul> <li>System requ</li> <li>Environment</li> <li>Insulator par</li> <li>Performance</li> </ul>                                            | al conditions<br>ameters                                                                                     | : | <ul> <li>System requ</li> <li>Environment</li> <li>Insulator par</li> <li>Time and resavailable</li> </ul>                                                                                           | al conditions<br>ameters                                                               |   | <ul> <li>System requ</li> <li>Environment</li> <li>Insulator par</li> <li>Time and res<br/>available</li> </ul>                            | al conditions<br>ameters                                                                                                       |
|                      | <ul> <li>Does the exi<br/>insulation sa<br/>project requi<br/>is it intended to<br/>same insulation</li> </ul>                              | tisfy the<br>rements and<br>to use the<br>on design ?                                                        | • | Is there time<br>site pollution                                                                                                                                                                      |                                                                                        |   | <ul> <li>Is there time<br/>site pollution</li> </ul>                                                                                       |                                                                                                                                |
| Decisions            | YES<br>Use the same<br>insulation<br>design                                                                                                 | NO<br>Use different<br>insulation<br>design,<br>materials or<br>size. Use<br>experience to<br>pre-select the | • | YES<br>Measure<br>Type of pollu<br>determines ti<br>test method                                                                                                                                      | he laboratory                                                                          |   | YES<br>Measure                                                                                                                             | NO<br>Estimate                                                                                                                 |
|                      |                                                                                                                                             | new solution<br>or size                                                                                      | • | Site severity                                                                                                                                                                                        | determines                                                                             |   |                                                                                                                                            |                                                                                                                                |
| Selection<br>process | <ul> <li>If necessary,<br/>profile and c<br/>guidance her<br/>adapt the pa<br/>the existing i<br/>the new choi<br/>Approach 2 of</li> </ul> | reepage<br>reafter to<br>rameters of<br>insulation to<br>ice using                                           | ŀ | Select candid<br>Test if polluti<br>performance<br>available for<br>If necessary,<br>selection/size<br>to the test re                                                                                | ion<br>data is not<br>candidates<br>, adjust<br>e according                            |   | <ul> <li>the guidance</li> <li>Use the pollucorrection fail</li> </ul>                                                                     | o select<br>profiles using<br>hereafter<br>ition level and<br>ctors for profile<br>naterial to size<br>n using the             |
| Accuracy             | A selection v<br>accuracy                                                                                                                   | vith a good                                                                                                  | • |                                                                                                                                                                                                      | ying<br>the degree of<br>r shortcuts in<br>rity<br>nd with the<br>and/or<br>the chosen |   | <ul> <li>1 or 2</li> <li>A selection waccuracy var<br/>to the degree<br/>and/or shorto<br/>severity eval</li> </ul>                        | solution<br>th approaches<br>vith an<br>ying according<br>e of errors<br>cuts in the site<br>uation and the<br>of the selected |

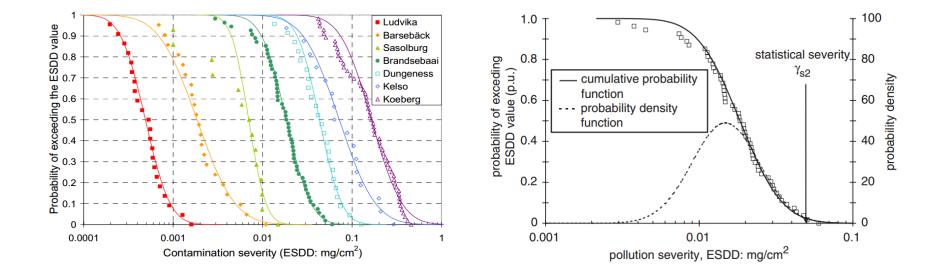
### Typical time scales

- Service experience: typically 5-10 years
- Test station experience: typically 2-5 years
- Site severity measurements: at least one year
- Estimation of site severity: weeks-months
- Laboratory testing: weeks-months





### 1. Introduction


2. Three general approaches

### 3. Evaluation of site pollution severity

- 4. Deterministic vs. statistical approach
- 5. Insulator Selection Tool (IST)



### **Environmental stress**



The distribution of the environmental stress is obtained **from site severity measurements**. These distributions are described by a lognormal distribution function. The standard deviation of Ln(ESDD) varies in a fairly narrow range (between 0,4 and 0,8), although the statistical severities (2% values) range over more than two orders of a magnitude.



#### SPS can be determined by:

- 1. Measurements in situ
- 2. Behaviour of insulators in service
- 3. Simulation (weather conditions)
- 4. Descriptions of environment

#### Measurements in situ:

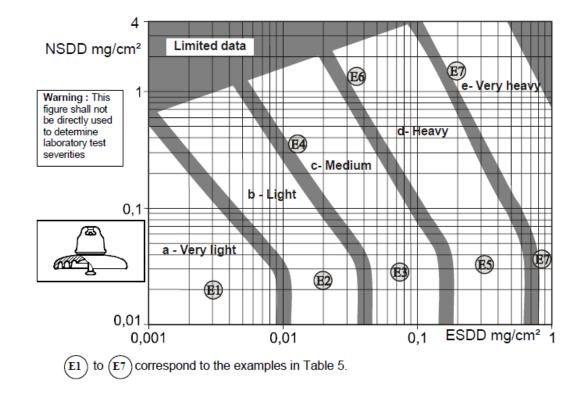
- Equivalent Salt Deposit Density (ESDD) and Non-Soluble Deposit Density (NSDD) on reference insulator
- Site equivalent salinity (SES) from leakage current on reference insulator
- Dust Deposit Gauge Index (DDGIS and DDGIN)
- Number of flashovers of insulators of different length
- Leakage current on sample insulators

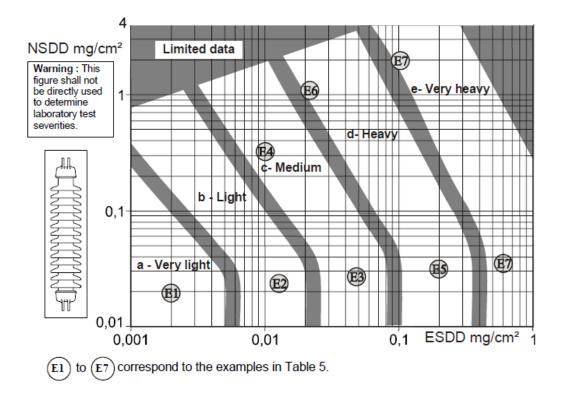


# Main pollution parameter: ESDD **ESDD and NSDD measurements**






Area


Area (

Area 5 Area 4 Area 3 Area 2



### SPS classes







\_\_\_\_

### Additional pollution parameter: DDDG

|   | (nor                                   | nex E<br>rmative)<br>osit gauge measuremer          | nts  |                          | Collection<br>tubes<br>Adjustables<br>guys<br>Collection<br>jars |  |
|---|----------------------------------------|-----------------------------------------------------|------|--------------------------|------------------------------------------------------------------|--|
|   |                                        |                                                     |      |                          | Support                                                          |  |
|   |                                        | ge pollution index, PI (μS/cm)<br>r is the highest) | Site | collution equarity class |                                                                  |  |
|   | Average monthly value<br>over one year | Monthly maximum<br>over one year                    | Site | pollution severity class |                                                                  |  |
|   | < 25                                   | < 50                                                | а    | Very light               |                                                                  |  |
|   | 25 to 75                               | 50 to 175                                           | b    | Light                    |                                                                  |  |
| ſ | 76 to 200                              | 176 to 500                                          | с    | Medium                   |                                                                  |  |
|   | 201 to 350                             | 501 to 850                                          | d    | Heavy                    |                                                                  |  |
|   | > 350                                  | > 850                                               | е    | Very heavy               |                                                                  |  |
|   |                                        |                                                     |      |                          |                                                                  |  |

| Directional dust depos<br>(take whichever) |                                  | Site pollution severity class                                            |
|--------------------------------------------|----------------------------------|--------------------------------------------------------------------------|
| Average monthly value<br>over one year     | Monthly maximum<br>over one year | correction                                                               |
| < 0,5                                      | < 1,5                            | None                                                                     |
| 0,5 to 1,0                                 | 1,5 to 2,5                       | Increase by one class                                                    |
| > 1,0                                      | > 2,5                            | Increase by one or two classes and<br>consider mitigation (e.g. washing) |

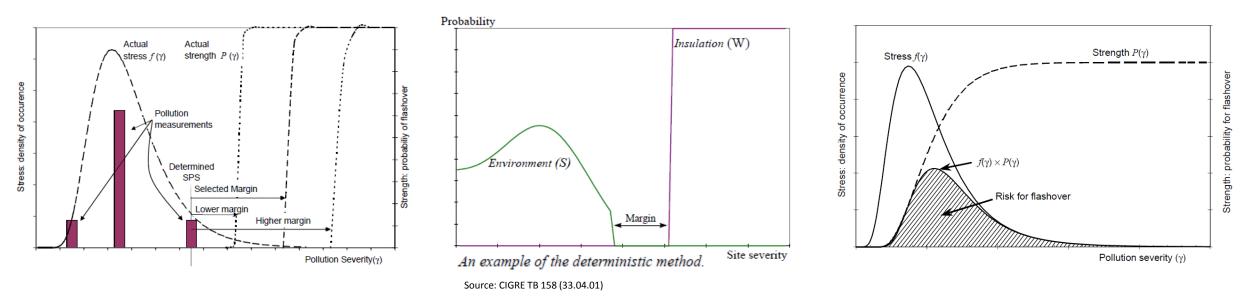


40 mm

351 mm 500 mm

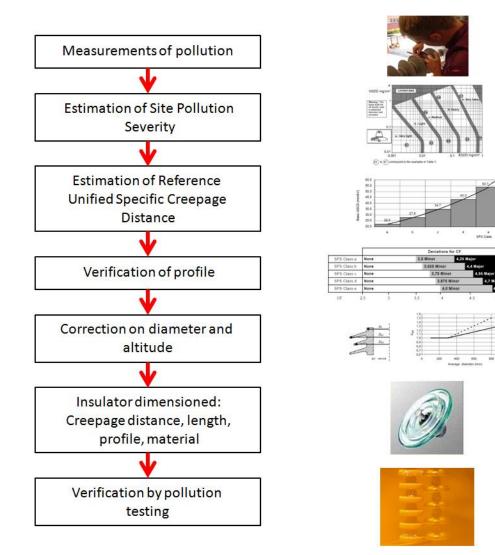
JEC 1963/08




- 1. Introduction
- 2. Three general approaches
- **3. Evaluation of site pollution severity**
- 4. Deterministic vs. statistical approach
- 5. Insulator Selection Tool (IST)

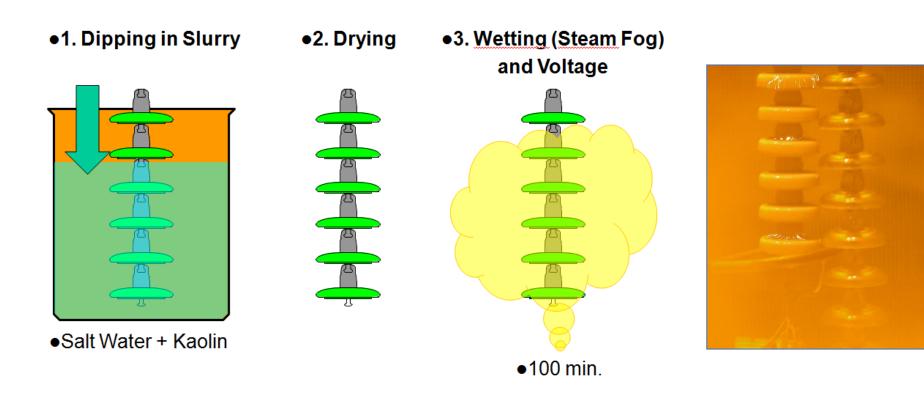


### Deterministic and statistical approach


Annex G (normative)

### Deterministic and statistical approaches for artificial pollution test severity and acceptance criteria





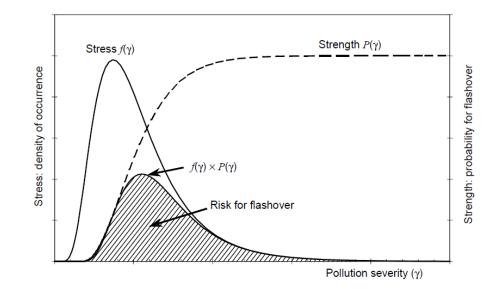

### Deterministic approach





### Standard solid layer test



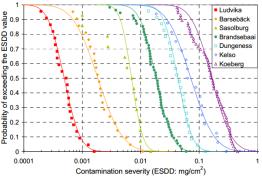



### Principle of statistical dimensioning



#### G.3 Statistical approach

The statistical dimensioning of insulators entails the selection of the dielectric strength of an insulator, with respect to the voltage and environmental stresses (stress/strength concept), to fulfil a specific availability requirement. This is done by evaluating the risk for flashover of potential insulation options and selecting those yielding an acceptable performance.



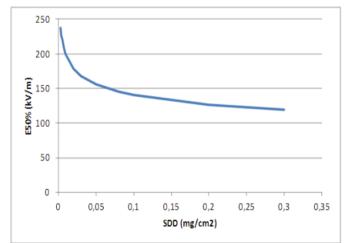



### Statistical approach

- Distribution of pollution stress f(γ) is obtained from service measurements.
- Cumulative distribution function P(γ) describing the strength of the insulation, i.e., the probability for flashover at maximum operating voltage, is determined from testing/service experience.
- The two functions f(γ) and P(γ) are multiplied to give the probability density for flashover, and the area under this curve expresses the risk for flashover during a pollution event.
- If the number of pollution events per year is known the risk for flashover per year can be calculated.

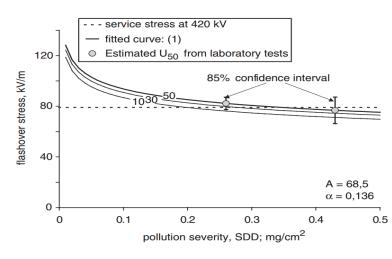




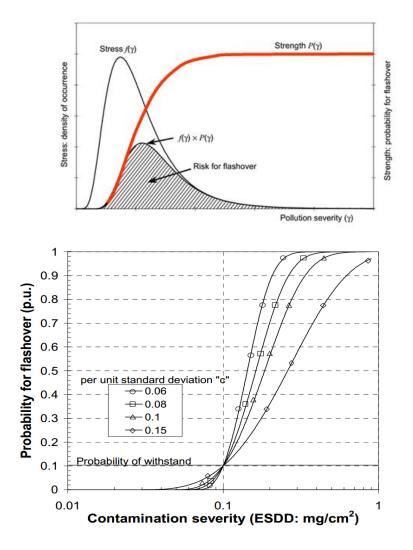

| Site name   | ESDD <sub>50</sub><br>(mg/cm <sup>2</sup> ) | Std. deviation<br>of Ln(ESDD) | Statistical severity $(\gamma_{s2}, mg/cm^2)$ |
|-------------|---------------------------------------------|-------------------------------|-----------------------------------------------|
| Ludvika     | 0,0005                                      | 0,52                          | 0,0014                                        |
| Barsebäck   | 0,002                                       | 0,77                          | 0,009                                         |
| Sasolburg   | 0,007                                       | 0,35                          | 0,014                                         |
| Brandsebaai | 0,018                                       | 0,54                          | 0,056                                         |
| Dungeness   | 0,043                                       | 0,45                          | 0,11                                          |
| Kelso       | 0,072                                       | 0,73                          | 0,32                                          |
| Koeberg     | 0,16                                        | 0,62                          | 0,59                                          |



### Statistical approach


- Distribution of pollution stress f(γ) is obtained from service measurements.
- Cumulative distribution function P(γ) describing the strength of the insulation, i.e., the probability for flashover at maximum operating voltage, is determined from testing/service experience.
- The two functions f(γ) and P(γ) are multiplied to give the probability density for flashover, and the area under this curve expresses the risk for flashover during a pollution event.
- If the number of pollution events per year is known the risk for flashover per year can be calculated.

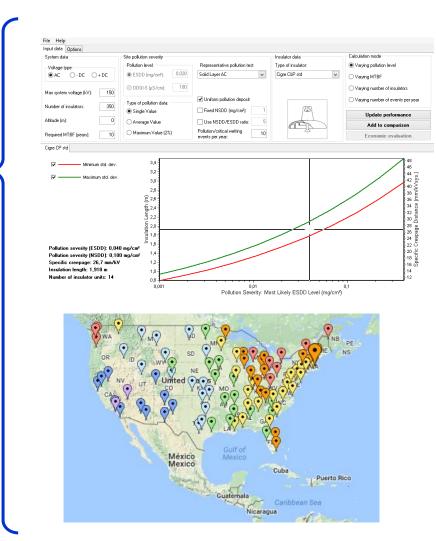






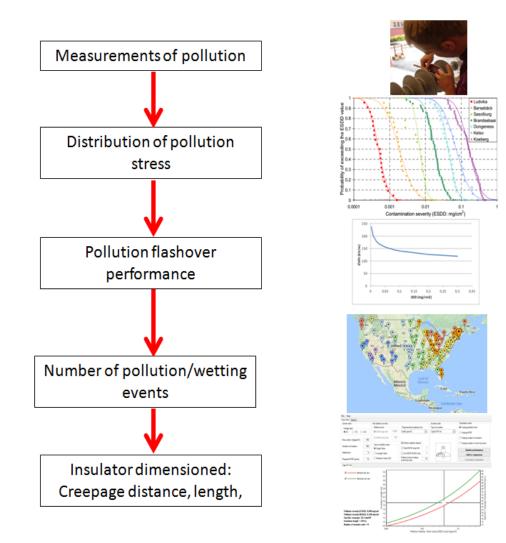

### Flashover pollution performance




The probability function for flashover performance is **usually determined through laboratory** variable voltage flashover tests. It can be adequately described by Weibull distribution function and is truncated at 2,5 standard deviation below the  $U_{50}$  (the probability for flashover is zero)






### Statistical approach

- Distribution of pollution stress f(γ) is obtained from service measurements.
- Cumulative distribution function P(γ) describing the strength of the insulation, i.e., the probability for flashover at maximum operating voltage, is determined from testing/service experience.
- The two functions f(γ) and P(γ) are multiplied to give the probability density for flashover, and the area under this curve expresses the risk for flashover during a pollution event.
- If the number of pollution events per year is known the risk for flashover per year can be calculated.





### Flow-chart for statistical dimensioning



2018-07-27



### Verification of calculations by service records-1



B2-205

**CIGRE 2006** 

#### Line Performance Estimator Software: Calculations of Lightning, Pollution and Ice Failure Rates Compared with Service Records

I. GUTMAN\* K. HALSAN L. WALLIN E. SOLOMONIK W. L. VOSLOO J. LUNDQUIST

| STRI   | Statnett | Svenska Kraftnät | NIIPT  | ESKOM        |
|--------|----------|------------------|--------|--------------|
| Sweden | Norway   | Sweden           | Russia | South Africa |



### Verification of calculations by service records-2

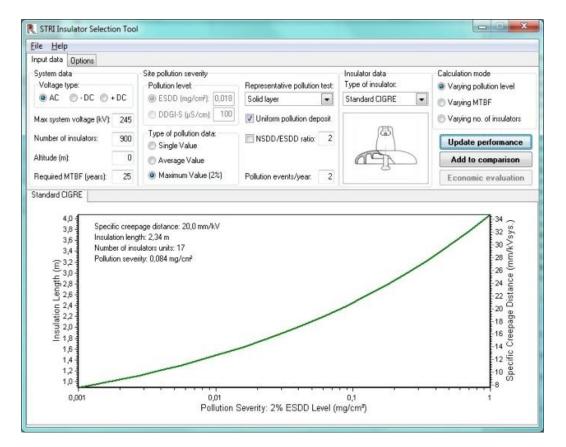
|          | Max.    |       | Failure rat | te per year   |
|----------|---------|-------|-------------|---------------|
| Source   | voltage | Lines | recorded in | calculated in |
|          | [kV]    |       | service     | LPE           |
|          | 420     | 1     | 0-0,1       | 0,2           |
| Statnett | 420     | 2     | 0           | 0,2           |
| (Norway) | 420     | 3     | 0           | 0,01          |
|          | 300     | 4     | 0-0,2       | 0,1           |
| ESKOM    | 400     | 1     | 0,6         | 1,0           |
| (South   | 400     | 2     | 1,0         | 0,5           |
| Africa)  | 400     | 3     | 0,2         | 0,5           |
| Anicaj   | 400     | 4     | 0           | 0,02          |
| NIIPT    | 126     | 1     | 0,4         | 0,4           |
| (Russia) | 126     | 2     | 1,4         | 3,0           |



- 1. Introduction
- 2. Three general approaches
- **3. Evaluation of site pollution severity**
- 4. Deterministic vs. statistical approach
- 5. Insulator Selection Tool (IST)



### Insulator Selection Tool (IST)


| R STRI Insulator Selection Tool                                  |                                                          |                                       |                               | – 🗆 X                               |
|------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|-------------------------------|-------------------------------------|
| File Help                                                        |                                                          |                                       |                               |                                     |
| Input data Options                                               |                                                          |                                       |                               |                                     |
| System data                                                      | Site pollution severity                                  |                                       | Insulator data                | Calculation mode                    |
| Voltage type:                                                    | Pollution level:                                         | Representative pollution test:        | Type of insulator:            | Varying pollution level             |
| ● AC ○ · DC ○ + DC                                               | ESDD (mg/cm²): 0.05                                      | Solid Layer AC 🗸 🗸                    | Generic C&P std <160 🗸 🗸      | ◯ Varying MTBF                      |
| Max system voltage (kV): 400                                     | ODDGI-S (μS/cm): 100                                     |                                       |                               | O Varying number of insulators      |
| Number of insulators: 400                                        | Type of pollution data:                                  | Uniform pollution deposit             |                               | ○ Varying number of events per year |
|                                                                  | Single Value                                             | Fixed NSDD (mg/cm <sup>2</sup> ): 0.1 | (8)                           | Update performance                  |
| Altitude (m): 0                                                  | Average Value                                            | Use NSDD/ESDD ratio: 20               |                               | Add to comparison                   |
| Required MTBF (years): 25                                        | Maximum Value (2%)                                       | Pollution/critical-wetting 30         | 4                             | Economic evaluation                 |
| Generic CP std <160                                              |                                                          |                                       |                               |                                     |
| Generic LP std < 160                                             |                                                          |                                       |                               |                                     |
| _                                                                | 6.8                                                      |                                       |                               |                                     |
| Minimum std. dev.                                                | 6.4                                                      |                                       |                               | 34 (s<br>32 (s)                     |
| Maximum std. dev.                                                | 6.0                                                      |                                       |                               | 32 Ås<br>30<br>28                   |
|                                                                  | Ê <sup>5.6</sup>                                         |                                       |                               | 28 E                                |
|                                                                  | (ш) 4.8<br>5.2<br>4.8<br>4.8<br>4.0<br>100<br>100<br>100 |                                       |                               | 26 U                                |
|                                                                  | 5 4.8                                                    |                                       |                               | Dista                               |
|                                                                  | -0 4.4                                                   |                                       |                               | - 22 B                              |
|                                                                  | 10 4.0                                                   |                                       |                               | 22 86<br>20 9<br>20 9<br>20 9       |
|                                                                  | 3.6                                                      |                                       |                               | -18 Ö                               |
| Pollution severity (ESDD): 0.1<br>Pollution severity (NSDD): 0.1 | 100 mg/cm² 3.2<br>100 mg/cm²                             |                                       |                               | 18 0<br>16 0<br>14 0                |
| Specific creepage: 22.7 mm/l                                     | kV                                                       |                                       |                               | - <sub>14</sub> ගි                  |
| Insulation length: 4.337 m                                       | 2.4                                                      |                                       |                               | - 12                                |
| Number of insulator units: 31                                    | 2.0                                                      |                                       |                               | 10                                  |
|                                                                  | 0.0                                                      |                                       | 0.1<br>2% ESDD Level (mg/cm²) |                                     |
|                                                                  |                                                          | r ondion obvoirty.                    | Lobb Lover (mgreint)          |                                     |

2018-07-27



### IST program

- Follows CIGRE/IEC principles for outdoor insulation selection
- Standard pollution parameters (ESDD/NSDD and DDDGI)
- Verified by comparisons with service experience
- Used practically by ESKOM, SEVES, NamPower, Fingrid, Statnett, Svenska Kraftnät, LAPP, Vattenfall, etc.





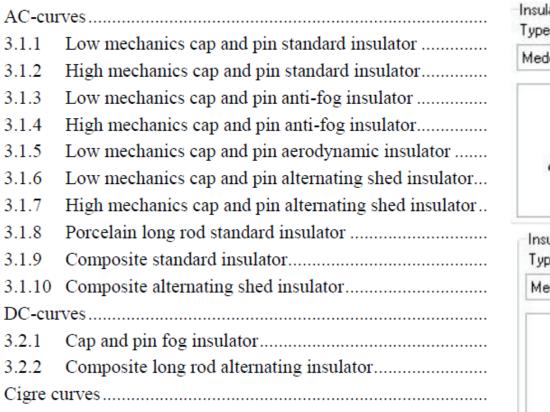
### Benefits

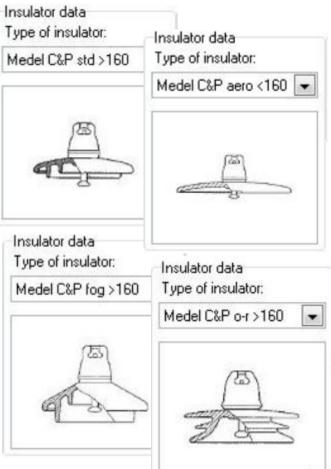
For manufacturers:

- Helps to focus on insulator performance
- Guides and educates customer in selection process
- Can be used as marketing tool
- Provides detailed performance analysis
- Is expandable and can be customized

#### For utilities:

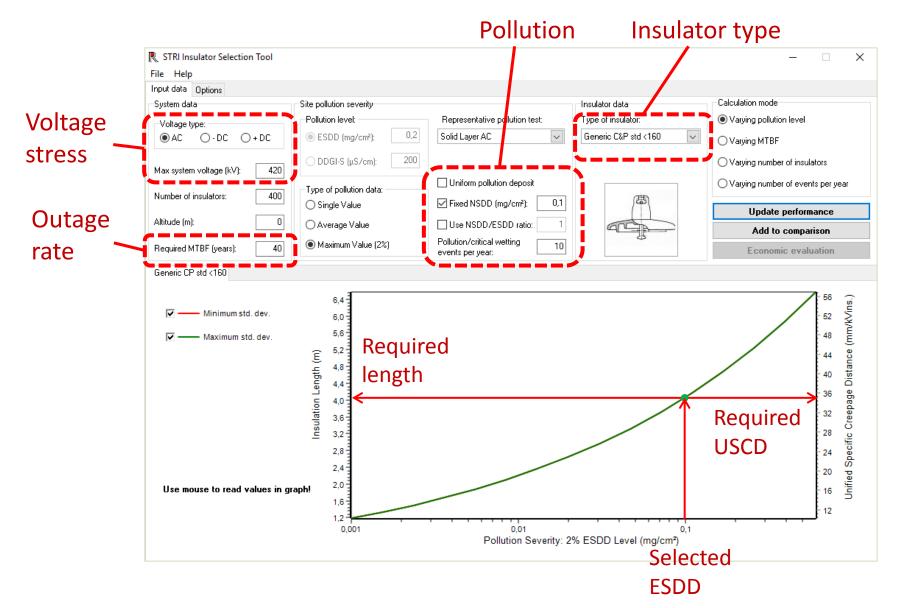
- Improves line availability in polluted areas
- Allows selection of most cost effective solution
- Is an excellent tool for education
- Enables technical comparison of different line insulators based on availability requirements





### **IST: practical applications**

- AC
  - ESKOM: refurbishment of 400 kV lines after massive outages
  - Statnett: dimensioning of new lines in northern areas
  - Svenska kraftnät: pollution mapping for refurbishment of substations on the west coast
  - NamPower: refurbishment of 220 kV lines
- DC
  - ESKOM: refurbishment of Cahora-Bassa line
  - Statnett: dimensioning of NordLink
  - Svenska kraftnät: dimensioning of Fenno-Skan 2 and SouthWest Link
  - Axpo Power and Amprion: dimensioning of AC/DC hybrid line
- AC to DC line conversion
  - $\approx$  10 feasibility studies




### Generic flashover performance curves







### Key inputs and outputs

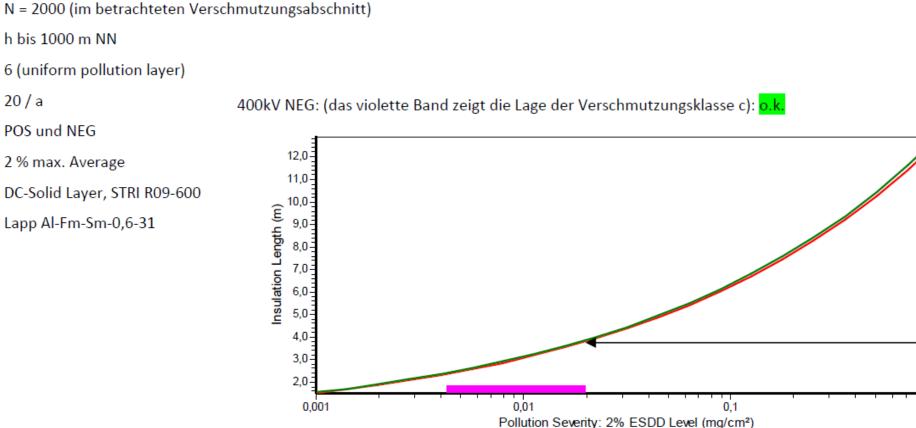


2018-07-27



Unified Specific

80


70 -60 -50

40

30

20

### New German North-South ± 400 / ± 500 kV Lines



#### Anzahl Isolatoren:

Höhe:

NSDD/ESDD:

Verschmutzungsereignisse:

Polarität:

ESDD:

Basis:

Profil:

h bis 1000 m NN

DEPENDENT

**NSULATION** 

GROUP

6 (uniform pollution layer)

20/a

2 % max. Average

Lapp Al-Fm-Sm-0,6-31



## How to get the program: https://i2group.se/software/ist/



Home About us Our services Software Our team Careers Contact

**IST 2018** 

IST 2018 Reference Manual

IST 2018 Student version



## Main theoretical references

- C.S. Engelbrecht, R. Hartings, J. Lundquist: "Statistical dimensioning of insulators with respect to polluted conditions", IEE Proc.-Gener. Transm. Distrib, Vol. 151 No.3, May 2004, pp. 321-326.
- C.S. Engelbrecht, I. Gutman, R. Hartings: "A practical implementation of statistical principles to select insulators with respect to polluted conditions on overhead a.c. lines", IEEE PowerTech 2005, St. Petersburg, Russia, 27-30 June, 2005, paper 129
- I. Gutman, W.L. Vosloo: "Application of statistical principles of insulator dimensioning with respect to polluted conditions to select line insulators based on test station results", IEEE PowerTech 2005, St. Petersburg, Russia, 27-30 June, 2005, paper 355
- L.L. Vladimirsky, E.A. Solomonik, N.N. Tikhodeev, I. Gutman: "Methods of statistical dimensioning of the outdoor insulation with respect to polluted conditions", IEEE PowerTech 2005, St. Petersburg, Russia, 27-30 June, 2005, paper 670
- I. Gutman: "Selection Criteria for Line Insulators Based on Availability Requirements", World Congress & Exhibition on Insulators, Arresters & Bushings, Hong Kong, 27-30 November 2005
- I. Gutman, J. Lundquist: "Optimization of AC and DC Insulation Using Software for Statistical Dimensioning", World Congress & Exhibition on Insulators, Arresters & Bushings, Seoul, Korea, 17-20 April 2011



# Main practical references 2007-2014

- I. Gutman, T. Kiiveri, L. Carlshem: "Statistical approach for the insulation dimensioning of the 500 kV HVDC line in Scandinavia", 15<sup>th</sup> ISH-2007, Ljubljana, Slovenia, 27-31 August, 2007, T4-13
- I. Gutman, W.L. Vosloo, F. Engelbrecht: "Practical Applications of an Insulator Selection Tool Program for Insulation Dimensioning Using Test Station & Test Tower Data", World Congress & Exhibition on Insulators, Arresters & Bushings, Crete, 11-13 May 2009
- I. Gutman, E. Volpov: "Implementation of Modern Methods of Insulation Coordination with Respect to Polluted Conditions in Design Practice of IECo", Electricity 2011 International Convention & Trade Show, Eilat, Israel, 23-26 November 2011, paper 21
- G. Heger, I. Gutman, W.L. Vosloo: "Determining Insulation Levels for 220 kV Transmission Lines in Namibia using the IST Software", 17th ISH-2011, Hannover, Germany, 22-26 August, 2011, E-030
- S. Berlijn, K. Halsan, R. I. Jonsdottir, J. Lundquist, I. Gutman, K. Kupitz: "Voltage Uprating of Statnett's 300 kV Transmission Lines to 420 kV", CIGRE-2012, B2-102
- I. Gutman, W.L Vosloo, L. Appollis: "Example of refurbishment of overhead lines 400 kV at Western Cape after major pollution event in February 2006", CIGRE-2012, B2-302
- S. Berlijn, I. Gutman, J. Lundquist: "Norwegian Utility Re-Dimensions Insulation in Voltage Upgrade Project", INMR, Issue 97, Quarter 3, Volume 20, N. 3, 2012, p.p. 78-85
- I. Gutman, W. Vosloo, J. Seifert: "Dimensioning of DC composite insulators for polluted area: case study for recent CIGRE/IEC approach", 18<sup>th</sup> ISH-2013, Seoul, Korea, 25-30 August, 2013, OH1-02
- B. Sander, J. Lundquist, I. Gutman, C. Neumann, B. Rusek, K.-H. Weck: "Conversion of AC multi-circuit lines to AC-DC hybrid lines with respect to the environmental impact", CIGRE Session 2014, B2-105